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Abstract. Deformation quantization of bosonic strings is considered. We show that the light-
cone gauge is the most convenient classical description to perform the quantization of bosonic
strings in the deformation quantization formalism. Similar to the field theory case, the oscillator
variables greatly facilitates the analysis. The mass spectrum, propagators and the Virasoro algebra
are finally described within this deformation quantization scheme.

1. Introduction

String theory is one of the most successful attempts to reconcile quantum mechanics and
general relativity (for a review of the perturbative theory see [1–4]). From the physical point
of view it is our best understanding of all matter and their interactions in an unified scheme.
On the mathematical side, string theory has been used to motivate an unsuspected interplay
among some mathematical subjects. At the perturbative level, it is well known that string
theory is related to the theory of Riemann surfaces [5] and some aspects of algebraic geometry
and mirror symmetry (see, for instance, [6]).

Non-perturbative revolution of string theory, through the introduction of D-branes and
duality, has been shown to be related to some aspects of toric geometry (see, for instance, [7]),
K-theory (see the Witten seminal paper, [8]), noncommutative geometry and deformation
quantization theory [9–11]. This latter is relevant for the description of the low-energy effective
theory of open strings on the D-brane world-volume, when a non-zero Neveu–Schwarz constant
B field is introduced. Thus, in this context, deformation quantization describes properly the
noncommutative spacetime instead of the standard quantization of the phase space of the
two-dimensional conformal field theory.

Deformation quantization of phase space is an equivalent description to that of the
operators and Hilbert spaces formalism. Although the operator theory is beautiful and has
a rich structure, in the former one, the computations are easier because the relevant structure
is still an algebra of functions with a well-defined star product (Moyal ∗ product).

The purpose of this paper is to provide explicitly the Weyl–Wigner–Moyal formalism
to construct the Moyal ∗ product on the algebra of functions on the phase space of
the bosonic string theory. This is the first step towards a complete description of the
deformation quantization of the phase space for the interacting superstring theory and its further
generalization to superstring field theory. Thus in this paper we focus on the application of the
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deformation quantization formalism to bosonic string theory. (The fermionic case is left for
a forthcoming paper.) And at the same time this is the natural extension of the deformation
quantization of classical fields developed in [12–18].

In order to be as self-contained as possible, in section 2, we briefly overview the
preliminaries and notation of string theory in order to prepare the theory for quantization.
Section 3 is devoted to the quantization of bosonic strings by using deformation quantization
theory. The results of this section show that the deformation quantization of bosonic strings
constitutes a new example of the application of the Weyl–Wigner–Moyal formalism. Indeed,
it prepares the theory for further applications and the realization of more general formulations
of deformation quantization (such as those given by Fedosov and Kontsevich [19]) to the phase
space of string theory. In section 4 we describe the Casimir effect and the normal ordering of
bosonic strings within deformation quantization formalism. As an example of the application
of the deformation quantization formalism, two-point correlation functions for the bosonic
string are computed in section 5. Finally in section 6 we give our final comments.

2. Overview of classical strings

In this section we give a brief overview of classical bosonic string theory. Our aim is not to
provide an extensive review of the theory, but to briefly recall the notation and preliminaries,
which will be strictly needed in the following sections (for further details see [1–4]). To
perform the deformation quantization we consider the string world-sheet � embedded into
the D-dimensional spacetime M of Lorentzian metric ηµν = diag(−1, 1, . . . , 1), µ, ν =
0, 1, . . . , D − 1. This embedding is defined by Xµ = Xµ(σ a), a = 0, 1, where σa are the
coordinates on �.

Let gab be a Riemannian metric of Lorentzian signature (−,+) on �. The dynamics of
the scalar fields Xµ is described by the Polyakov action:

SP = −T

2

∫
�

d2σ
√−ggab∂aX

µ∂bXµ (2.1)

where T denotes the string tension. In the conformal gauge (gab = ηab) the equations of
motion are

∂a(η
ab∂bX

µ) = 0 (2.2)

while the constraints (Tab = 0) are given by

ẊµẊµ = 0 ẊµẊµ + X′µX′µ = 0 (2.3)

where Ẋµ ≡ ∂Xµ

∂σ 0 and X′µ ≡ ∂Xµ

∂σ 1 .

2.1. Closed strings

The general solution of equation (2.2) satisfying the closed string boundary condition
Xµ(τ, 0) = Xµ(τ, π) can be written in the form of the following series:

Xµ(τ, σ ) = xµ +
1

πT
pµτ +

1√
2πT

×
∑
n�=0

√
h̄

2|n| {a
µ
n exp(2i(nσ − |n|τ)) + aµ∗

n exp(−2i(nσ − |n|τ))} (2.4)
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where xµ and pµ are real variables representing the centre-of-mass coordinates of the phase
space. The conjugate momentum �µ of Xµ is, as usual, defined by

�µ(τ, σ ) = 1

π
pµ + i

√
T

2π

∑
n �=0

√
2h̄|n|{aµ∗

n exp(−2i(nσ − |n|τ))− aµ
n exp(2i(nσ − |n|τ))}.

(2.5)

These solutions (Xµ,�µ) satisfy the standard Poisson brackets:

{Xµ(τ, σ ),�ν(τ, σ ′)} = ηµνδ(σ − σ ′)
{Xµ(τ, σ ),Xν(τ, σ ′)} = 0 = {�µ(τ, σ ),�ν(τ, σ ′)} (2.6)

and lead to the following Poisson brackets for xµ, pµ, a
µ
n and a

µ∗
n :

{xµ, pν} = ηµν {aµ
m, a

ν∗
n } = −

i

h̄
δmnη

µν (2.7)

with the remaining independent Poisson brackets being zero.
The bosonic strings formalism is usually expressed in terms of the α variables α

µ
n =

−i
√
h̄na

µ
n , α̃

µ
n = −i

√
h̄na

µ
−n, α

µ
−n = α

µ∗
n = i

√
h̄na

µ∗
n and α̃

µ
−n = α̃

µ∗
n = i

√
h̄na

µ∗
−n (for

n > 0). Thus Xµ and �µ are reexpressed as

Xµ(τ, σ ) = xµ +
1

πT
pµτ +

i

2
√
πT

∑
n�=0

1

n
{αµ

n exp(−2in(τ − σ))

+α̃µ
n exp(−2in(τ + σ))} (2.8)

�µ(τ, σ ) = 1

π
pµ +

√
T

π

∑
n �=0

{αµ
n exp(−2in(τ − σ)) + α̃µ

n exp(−2in(τ + σ))} (2.9)

while the Poisson brackets (2.7) are

{xµ, pν} = ηµν

{αµ
m, α

ν
n} = −imδm+n,0η

µν {α̃µ
m, α̃

ν
n} = −imδm+n,0η

µν
(2.10)

for all m, n �= 0.
In the light-cone gauge the constraint equations (2.3) can be easily solved and then

eliminated. This gauge will be crucial for the deformation quantization of the bosonic string
in order to identify the relevant phase space when implementing this quantization.

First, introduce the light-cone (null) coordinates X± := 1√
2
(X0 ± XD−1), and the

remaining coordinates Xj , j = 1, . . . , D−2 are left as before. As X+(τ, σ ) satisfies the wave
equation (2.2) one can choose the coordinate τ in such a manner that X+(τ, σ ) = 1

πT
p+τ. In

this gauge we can solve the constraint equations in the sense that p−, α− and α̃− are defined
by p+, pj , αj

n and α̃
j
n . Thus the (independent) dynamical variables of the string are x−, p+,

xj , pj , αj
n and α̃

j
n for n �= 0 or, equivalently, x−, p+, Xj and �j . For the Poisson bracket for

x− and p+ we have {x−, p+} = −1.
In the light-cone gauge the square mass M2 = −pµpµ now takes the form

M2 = 4πT

D−2∑
j=1

∑
n �=0

αj
nα

j
−n = 4πT

D−2∑
j=1

∑
n �=0

α̃j
nα̃

j
−n. (2.11)

Then the Hamiltonian H = T
2

∫ π

0 dσ {∑D−2
j=1 ((�j

T
)2 + (X′j )2)} is

H =
∑D−2

j=1 (pj )2

2πT
+ 2h̄

D−2∑
j=1

∑
n�=0

|n|aj∗
n aj

n =
p+p−

πT
. (2.12)
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Now analogously as in the case of classical fields [18, 20] we introduce the oscillator
variables Q

j
n and P

j
n , n �= 0, as follows:

Qj
n(τ) :=

√
h̄

4|n| (a
j
n(τ ) + aj∗

n (τ )) P j
n (τ ) := i

√
h̄|n|(aj∗

n (τ )− aj
n(τ )) (2.13)

where a
j
n(τ ) := a

j
n exp(−2i|n|τ).

By relations (2.7) the Poisson brackets of the oscillator variables are given by

{Qj
m(τ), P

k
n (τ )} = δjkδmn

{Qj
m(τ),Q

k
n(τ )} = 0 = {P j

m(τ), P
k
n (τ )}.

(2.14)

From equation (2.13) we quickly find

aj
n(τ ) =

√
|n|
h̄

(
Qj

n(τ) +
i

2|n|P
j
n (τ )

)
. (2.15)

Straightforward calculations show that equations (2.4) and (2.5) give

aj
n(τ ) =

1

2
√
πh̄|n|

∫ π

0
dσ

(
2|n|
√
TXj(τ, σ ) +

i√
T
�j(τ, σ )

)
exp(−2inσ). (2.16)

Substituting equation (2.16) into (2.13) one gets

Qj
n(τ) =

1√
π

∫ π

0
dσ

(√
TXj(σ ) cos(2nσ + 2|n|τ)

+
1

2|n|√T
�j(σ ) sin(2nσ + 2|n|τ)

)

P j
n (τ ) =

1√
π

∫ π

0
dσ

(
− 2|n|

√
TXj(σ ) sin(2nσ + 2|n|τ)

+
1√
T
�j(σ ) cos(2nσ + 2|n|τ)

)
(2.17)

where Xj(σ ) ≡ Xj(0, σ ) and �j(σ) ≡ �j(0, σ ).
Inserting equation (2.15) into (2.4) and (2.5) the inverse equation can be easily obtained:

Xj(τ, σ ) = xj +
1

πT
pjτ +

1√
πT

∑
n �=0

(
Qj

n cos(2nσ − 2|n|τ)

− 1

2|n|P
j
n sin(2nσ − 2|n|τ)

)

�j(τ, σ ) = 1

π
pj +

√
T

π

∑
n�=0

(2|n|Qj
n sin(2nσ − 2|n|τ) + P j

n cos(2nσ − 2|n|τ))

(2.18)

where Q
j
n ≡ Q

j
n(0) and P

j
n ≡ P

j
n (0).

Observe also that from equation (2.13) one quickly finds that

Qj
n(τ) = Qj

n cos(2|n|τ) +
1

2|n|P
j
n sin(2|n|τ)

P j
n (τ ) = −2|n|Qj

n sin(2|n|τ) + P j
n cos(2|n|τ).

(2.19)

Finally, from equations (2.11), (2.12) and (2.15) the mass squared and the Hamiltonian can be
expressed in terms of the (P,Q) variables:

M2 = 4πT

D−2∑
j=1

∑
n �=0

((P j
n )

2 + 4n2(Qj
n)

2) (2.20)
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and

H =
∑D−2

j=1 (pj )2

2πT
+

1

2

D−2∑
j=1

∑
n�=0

((P j
n )

2 + 4n2(Qj
n)

2). (2.21)

Thus one can use the (independent) dynamical variables (x−, p+, xj , pj ,Q
j
n, P

j
n ) and

these variables are canonically related to the variables (x−, p+, Xj ,�j ). Straightforward
calculations give

{Xj(τ, σ ),�k(τ, σ ′)}(x,p,Q,P ) := δjkδ(σ − σ ′)
{Xj(τ, σ ),Xk(τ, σ ′)}(x,p,Q,P ) = 0 = {�j(τ, σ ),�k(τ, σ ′)}(x,p,Q,P ).

(2.22)

2.2. Open strings

In this case the general solution of equation (2.2) satisfying the open string boundary condition
X′µ(τ, 0) = X′µ(τ, π) = 0 can be represented by the series

Xµ(τ, σ ) = xµ +
1

πT
pµτ +

1√
πT

∞∑
n=1

√
h̄

n
(aµ

n exp(−inτ) + aµ∗
n exp(inτ)) cos(nσ)

= xµ +
1

πT
pµτ +

i√
πT

∑
n �=0

1

n
αµ
n exp(−inτ) cos(nσ). (2.23)

Note that the above boundary condition at σ = 0 yields a
µ
n = a

µ
−n for all n �= 0. Here α

µ
n are

defined as before and α̃
µ
n do not appear as independent variables because a

µ
n = a

µ
−n.

Then

�µ(τ, σ ) = T Ẋµ = 1

π
pµ + i

√
T

π

∞∑
n=1

√
h̄n(aµ∗

n exp(inτ)− aµ
n exp(−inτ)) cos(nσ)

= 1

π
pµ +

√
T

π

∑
n�=0

αµ
n exp(−inτ) cos(nσ). (2.24)

In the light-cone gauge the squared mass M2 is given by

M2 = −pµpµ = πT

D−2∑
j=1

∑
n�=0

αj
nα

j
−n (2.25)

while the Hamiltonian is

H = 1

2

D−2∑
j=1

∞∑
n=−∞

αj
nα

j
−n =

∑D−2
j=1 (pj )2

2πT
+ h̄

D−2∑
j=1

∞∑
n=1

naj
na

j∗
n . (2.26)

Analogously as with the closed string case we introduce new variables Q
j
n and P

j
n ,

n = 1, . . . ,∞:

Qj
n(τ) :=

√
h̄

2n
(aj

n(τ ) + aj∗
n (τ )) = i

n
√

2
(αj

n(τ )− α
j
−n(τ ))

P j
n (τ ) := i

√
h̄n

2
(aj∗

n (τ )− aj
n(τ )) =

1√
2
(αj

n(τ ) + α
j
−n(τ ))

(2.27)

where a
j
n(τ ) := a

j
n exp(−inτ), n ∈ Z+. Q

j
n(τ) and P

j
n (τ ) fulfil the Poisson bracket

formulae (2.14). Then

aj
n(τ ) =

√
n

2h̄

(
Qj

n(τ) +
i

n
P j

n (τ )

)
n ∈ Z+. (2.28)
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Inserting equation (2.28) into (2.23) and (2.24) one gets

Xj(τ, σ ) = xj +
1

πT
pjτ +

√
2

πT

∞∑
n=1

(
Qj

n cos(nτ) +
1

n
P j

n sin(nτ)

)
cos(nσ)

�j (τ, σ ) = 1

π
pj +

√
2T

π

∞∑
n=1

(−nQj
n sin(nτ) + P j

n cos(nτ)) cos(nσ)

(2.29)

where, as before, Qj
n ≡ Q

j
n(0) and P

j
n ≡ P

j
n (0).

From equations (2.23) and (2.24) we find

aj
n(τ ) =

1√
πh̄n

∫ π

0
dσ

(
n
√
TXj(τ, σ ) +

i√
T
�j(τ, σ )

)
cos(nσ). (2.30)

Substituting equation (2.30) into (2.27) one quickly obtains

Qj
n(τ) =

√
2

π

∫ π

0
dσ

(√
TXj(σ ) cos(nτ) +

1

n
√
T
�j(σ ) sin(nτ)

)
cos(nσ)

P j
n (τ ) =

√
2

π

∫ π

0
dσ

(
−n
√
TXj(σ ) sin(nτ) +

1√
T
�j(σ ) cos(nτ)

)
cos(nσ).

(2.31)

From equation (2.27) we have

Qj
n(τ) = Qj

n cos(nτ) +
1

n
P j

n sin(nτ)

P j
n (τ ) = −nQj

n sin(nτ) + P j
n cos(nτ)

(2.32)

(compare with equation (2.19)).
Finally, M2 and H in terms of oscillator variables are given by

M2 = πT

D−2∑
j=1

∞∑
n=1

((P j
n )

2 + n2(Qj
n)

2) (2.33)

and

H =
∑D−2

j=1 (pj )2

2πT
+

1

2

D−2∑
j=1

∞∑
n=1

((P j
n )

2 + n2(Qj
n)

2). (2.34)

As before we can use the (independent) dynamical variables (x−, p+, xj , pj ,Q
j
n, P

j
n ) and they

are canonically related to (x−, p+, Xj ,�j ). Observe that, in the present case, n ∈ Z+.

3. Deformation quantization of the bosonic string

In this section we are going to use the well known machinery of deformation quantization [21–
32] for the case of bosonic strings. We show that the bosonic string in the light-cone gauge can
be quantized by a deformation of the classical theory. Here we also show that the Weyl–Wigner–
Moyal formalism can be carried over to string theory. This constitutes a new application of
the deformation quantization formalism.

3.1. Closed strings

According to the overview of section 2 the phase space Z of a closed string can be understood
as the Cartesian product Z = R

2 × R
2(D−2) × R

2∞ endowed with the following symplectic
form:

ω = dp− ∧ dx− +
D−2∑
j=1

(
dpj ∧ dxj +

∑
n�=0

dPjn ∧ dQj
n

)
(3.1)



Deformation quantization of bosonic strings 7941

where p− = −p+, pj = pj and Pjn = P
j
n .

Equivalently, one can consider Z to be Z = R
2 × % where % is the set % =

{(Xj (σ ),�j (σ ))j=1,...,D−2}, with Xj(σ ) and �j(σ) = �j(σ) being arbitrary real functions
of σ ∈ [0, π ] satisfying the boundary conditions Xj(0) = Xj(π) and �j(0) = �j(π). The
symplectic form now has the functional form

ω = dp− ∧ dx− +
D−2∑
j=1

∫ π

0
dσ δ�j(σ ) ∧ δXj (σ ). (3.2)

Let x̂−, p̂+ = −p̂−, X̂j and �̂j be the field operators satisfying

x̂−|x−〉 = x−|x−〉 p̂+|p+〉 = p+|p+〉
X̂j (σ )|Xj 〉 = Xj(σ )|Xj 〉 �̂j (σ )|�j 〉 = �j(σ)|�j 〉
[X̂j (σ ), �̂k(σ ′)] = ih̄δjkδ(σ − σ ′) [x̂−, p̂+] = −ih̄.

(3.3)

As usual, the Fock space can be constructed from the centre-of-mass variables plus the oscillator
variables as follows:

|x−, X〉 := |x−〉 ⊗
( D−2⊗

j=1

|Xj 〉
)

|p+,�〉 := |p+〉 ⊗
( D−2⊗

j=1

|�j 〉
)

while the measures of the functional integrals are given by

DX =
∏
σ

dX1 (σ ), . . . , dXD−2(σ ) and D� =
∏
σ

d�1 (σ ), . . . , d�D−2 (σ ).

(3.4)

With these definitions we fix the normalization of these states as follows:∫
dx−DX|x−, X〉〈x−, X| = 1̂ and∫
d

(
p+

2πh̄

)
D
(

�

2πh̄

)
|p+,�〉〈p+,�| = 1̂.

(3.5)

Let F = F [x−, X, p+,�] be a functional on the phase space Z . Then, according to the Weyl
rule we assign the following operator F̂ corresponding to F :

F̂ = W(F) =
∫

dx− dp+

2πh̄
DXD

(
�

2πh̄

)
F [x−, X, p+,�](̂[x−, X, p+,�] (3.6)

where (̂[x−, X, p+,�] is the Stratonovich–Weyl (SW) quantizer:

(̂[x−, X, p+,�] =
∫

dξ−Dξ exp

{
− i

h̄

(
− ξ−p+ +

∫ π

0
dσ ξ(σ ) ·�(σ)

)}

×
∣∣∣∣x− − ξ−

2
, X − ξ

2

〉〈
X +

ξ

2
, x− +

ξ−

2

∣∣∣∣
=
∫

d

(
η+

2πh̄

)
D
(

η

2πh̄

)
exp

{
− i

h̄

(
− x−η+ +

∫ π

0
dσ η(σ ) ·X(σ)

)}

×
∣∣∣∣p+ +

η+

2
,� +

η

2

〉〈
�− η

2
, p+ − η+

2

∣∣∣∣ (3.7)

with the obvious notation ξ(σ ) · �(σ) ≡ ∑D−2
j=1 ξ j (σ )�j (σ ) and η(σ ) · X(σ) ≡∑D−2

j=1 ηj (σ )Xj (σ ).
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The SW quantizer has the important properties

((̂[x−, X, p+,�])† = (̂[x−, X, p+,�] (3.8)

Tr((̂[x−, X, p+,�]) = 1 (3.9)

Tr((̂[x−, X, p+,�](̂[′x−, ′X, ′p+
, ′�])

= δ(x− − ′x−)δ
(
p+ − ′p+

2πh̄

)
δ[X − ′X]δ

[
�− ′�

2πh̄

]
. (3.10)

Multiplying equation (3.6) by (̂[x−, X, p+,�] and taking the trace one has

W−1(F̂ ) = F [x−, X, p+,�] = Tr((̂[x−, X, p+,�]F̂ ). (3.11)

This enables us to solve the following problem. Let F1 = F1[x−, X, p+,�] and
F2 = F2[x−, X, p+,�] be functionals defined on the phase space Z and let F̂1 = W(F1)

and F̂2 = W(F2) be their corresponding operators. The problem is what functional on Z
corresponds to the product F̂1F̂2. This functional is denoted by F1 ∗ F2 and it is called the
Moyal ∗ product of F1 and F2.

By equation (3.11) one gets

(F1 ∗ F2)[x
−, X, p+,�] := W−1(F̂1F̂2) = Tr((̂[x−, X, p+,�]F̂1F̂2). (3.12)

Substituting equation (3.6) into (3.12), then using (3.7) and perfoming straightforward but
tedious manipulations (see, e.g., [31]) we finally obtain

(F1 ∗ F2)[x
−, X, p+,�] = F1[x−, X, p+,�] exp

{
ih̄

2

↔
P
}
F2[x−, X, p+,�]

↔
P:=


 ←

∂

∂p+

→
∂

∂x−
−

←
∂

∂x−

→
∂

∂p+


+

D−2∑
j=1

∫ π

0
dσ


 ←

δ

δXj (σ )

→
δ

δ�j (σ )
−

←
δ

δ�j (σ )

→
δ

δXj (σ )


 .

(3.13)

Now it is an easy matter to define the Wigner functional. Assume ρ̂ to be the density
operator of the quantum state of a bosonic string. Then, according to the general formula (3.11)
the functional ρ[x−, X, p+,�] corresponding to ρ̂ is (use also (3.7))

ρ[x−, X, p+,�] = W−1(ρ̂) = Tr((̂[x−, X, p+,�]ρ̂)

=
∫

dξ−Dξ exp

{
− i

h̄

(
− ξ−p+ +

∫ π

0
dσ ξ(σ ) ·�(σ)

)}

×
〈
X +

ξ

2
, x− +

ξ−

2

∣∣∣∣ρ̂
∣∣∣∣x− − ξ−

2
, X − ξ

2

〉
. (3.14)

Then the Wigner functional ρ
W

[x−, X, p+,�] is defined by a simple modification of
equation (3.14), namely

ρ
W

[x−, X, p+,�] :=
∫

d

(
ξ−

2πh̄

)
D
(

ξ

2πh̄

)
exp

{
− i

h̄

(
− ξ−p+ +

∫ π

0
dσ ξ(σ ) ·�(σ)

)}

×
〈
X +

ξ

2
, x− +

ξ−

2

∣∣∣∣ρ̂
∣∣∣∣x− − ξ−

2
, X − ξ

2

〉
. (3.15)

In particular, for the pure state ρ̂ = |+〉〈+| we get

ρ
W

[x−, X, p+,�] =
∫

d

(
ξ−

2πh̄

)
D
(

ξ

2πh̄

)
exp

{
− i

h̄

(
− ξ−p+ +

∫ π

0
dσ ξ(σ ) ·�(σ)

)}

×+∗
[
x− − ξ−

2
, X − ξ

2

]
+

[
x− +

ξ−

2
, X +

ξ

2

]
(3.16)
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where +[x−, X] stands for |+〉 in the Schrödinger representation.
As will become clear very soon some calculations simplify when the variables

(x−, p+, xj , pj , Qj
n, P

j
n ) are used. In terms of these variables one has (in the obvious notation)

(̂(x−,Q, p+, P ) =
∫

dξ− dξ exp

{
− i

h̄
(−ξ−p+ + ξ · P)

}

×
∣∣∣∣x− − ξ−

2
,Q− ξ

2

〉 〈
Q +

ξ

2
, x− +

ξ−

2

∣∣∣∣
=
∫

d

(
η+

2πh̄

)
d
( η

2πh̄

)
exp

{
− i

h̄
(−x−η+ + η ·Q)

}

×
∣∣∣∣p+ +

η+

2
, P +

η

2

〉 〈
P − η

2
, p+ − η+

2

∣∣∣∣ (3.17)

where dξ ≡ ∏
n∈Z dξ 1

n , . . . , dξD−2
n , d( η

2πh̄
) ≡ ∏

n∈Z d( η1
n

2πh̄
), . . . , d( ηD−2

n

2πh̄
), ξ · P ≡∑D−2

j=1

∑∞
n=−∞ ξ

j
n P

j
n , η ·Q ≡∑D−2

j=1

∑∞
n=−∞ η

j
nQ

j
n, P j

0 ≡ pj and Q
j

0 ≡ xj .
Then the Moyal ∗ product in terms of these variables is

(F1 ∗ F2)(x
−,Q, p+, P ) = F1(x

−,Q, p+, P ) exp

{
ih̄

2

↔
P
}
F2(x

−,Q, p+, P )

↔
P:=


 ←

∂

∂p+

→
∂

∂x−
−

←
∂

∂x−

→
∂

∂p+


 +

D−2∑
j=1

∞∑
n=−∞


 ←

∂

∂Q
j
n

→
∂

∂P
j
n

−
←
∂

∂P
j
n

→
∂

∂Q
j
n


 .

(3.18)

We can also express the Moyal ∗ product in terms of aj
n and a

j∗
n or αj

n and α̃
j
n :

∗ = exp

{
ih̄

2

↔
P
}

= exp

{
ih̄

2

[( ←
∂

∂p+

→
∂

∂x−
−

←
∂

∂x−

→
∂

∂p+

)
+

D−2∑
j=1

( ←
∂

∂xj

→
∂

∂pj
−
←
∂

∂pj

→
∂

∂xj

)]}

× exp

{
1

2

D−2∑
j=1

∑
n�=0

( ←
∂

∂a
j
n

→
∂

∂a
j∗
n

−
←
∂

∂a
j∗
n

→
∂

∂a
j
n

)}

= · · · exp

{
h̄

2

D−2∑
j=1

∑
n�=0

n

( ←
∂

∂α
j
n

→
∂

∂α
j
−n

+

←
∂

∂α̃
j
n

→
∂

∂α̃
j
−n

)}
. (3.19)

Finally, for the Wigner function one obtains

ρ
W
(x−,Q, p+, P ) =

∫
d

(
ξ−

2πh̄

)
d

(
ξ

2πh̄

)
exp

{
− i

h̄
(−ξ−p+ + ξ · P)

}
〈
Q +

ξ

2
, x− +

ξ−

2

∣∣∣∣ ρ̂
∣∣∣∣x− − ξ−

2
,Q− ξ

2

〉
(3.20)

and in the case of the pure state ρ̂ = |+〉〈+|
ρ

W
(x−,Q, p+, P ) =

∫
d

(
ξ−

2πh̄

)
d

(
ξ

2πh̄

)
exp

{
− i

h̄
(−ξ−p+ + ξ · P)

}

×+∗
(
x− − ξ−

2
,Q− ξ

2

)
+

(
x− +

ξ−

2
,Q +

ξ

2

)
. (3.21)

Given ρ
W

one can use equation (3.6) to find the corresponding density operator ρ̂:

ρ̂ =
∫

dx− dp+ dQ dP ρ
W
(x−,Q, p+, P )(̂(x−,Q, p+, P ). (3.22)



7944 H Garcı́a-Compeán et al

Consequently, the average value 〈F̂ 〉 is

〈F̂ 〉 = Tr(ρ̂F̂ )

Tr{ρ̂}

=
∫

dx− dp+ dQ dP ρ
W
(x−,Q, p+, P )Tr((̂(x−,Q, p+, P )F̂ )∫

dx− dp+ dQ dP ρ
W
(x−,Q, p+, P )

=
∫

dx− dp+ dQ dP ρ
W
(x−,Q, p+, P )W−1(F̂ )(x−,Q, p+, P )∫

dx− dp+ dQ dP ρ
W
(x−,Q, p+, P )

. (3.23)

Assume that ρ̂ = |+〉〈+|. Substituting this ρ̂ into equation (3.22), multiplying from the
left by 〈Q̃, x̃−| and from the right by |x̃−, Q̃〉 and employing equation (3.17) one gets

|+(x̃−, Q̃)|2 =
∫

dp+ dP ρ
W
(x̃−, Q̃, p+, P ). (3.24)

Suppose that +(x̃−, Q̃) �= 0. Then inserting ρ̂ = |+〉〈+| into (3.22), multiplying from the
left by 〈Q, x−| and from the right by |x̃−, Q̃〉, using equations (3.17) and (3.24) we easily find
the wavefunction +(x−,Q) in terms of the corresponding Wigner function ρ

W
:

+(x−,Q) = exp{iϕ}

×
∫

dp+ dP ρ
W
( x−+x̃−

2 , Q+Q̃
2 , p+, P ) exp{− i

h̄
(−(x− − x̃−)p+ + (Q− Q̃) · P)}

(
∫

dp+ dP ρ
W
(x̃−, Q̃, p+, P ))1/2

(3.25)

where ϕ is an arbitrary real constant.
Of course, in terms of Xj(σ ) and �j(σ) one has

+[x−, X] = exp{iϕ}
(∫

dp+ D�ρ
W

[
x− + x̃−

2
,
X + X̃

2
, p+,�

]

× exp

{
− i

h̄

(
− (x− − x̃−)p+ +

∫ π

0
dσ (X(σ)− X̃(σ )) ·�(σ)

)})

×
{(∫

dp+ D�ρ
W

[x̃−, X̃, p+,�]

)1/2}−1

(3.26)

where X(σ) ·�(σ) ≡∑D−2
j=1 Xj(σ )�j (σ ).

The natural question is: when does a real function ρ
W
(x−,Q, p+, P ) represent some

quantum state, i.e. it can be considered to be a Wigner function? The necessary and sufficient
condition is ∫

dx− dp+ dQ dP ρ
W
(x−,Q, p+, P )(f ∗ ∗ f )(x−,Q, p+, P ) � 0 (3.27)

for any f ∈ C∞(Z)[[h̄]], and∫
dx− dp+ dQ dP ρ

W
(x−,Q, p+, P ) > 0. (3.28)

(See [29, 32].)

3.2. Example: the ground state

The Wigner function ρ
W0 of the ground state is defined by

aj
n ∗ ρW0 = 0 pj ∗ ρ

W0 = 0 and p+ ∗ ρ
W0 = 0 (3.29)
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for j = 1, . . . , D − 2 and n �= 0.
Employing equation (3.19) we have

aj
nρW0 +

1

2

∂ρ
W0

∂a
j∗
n

= 0 pjρ
W0 = 0 and p+ρ

W0 = 0 (3.30)

for j = 1, . . . , D − 2 and n �= 0. The general real solution of equation (3.30) also
satisfying (3.27) and (3.28) is

ρ
W0 = C exp

{
− 2

D−2∑
j=1

∑
n �=0

aj
na

j∗
n

}
δ(p1), . . . , δ(pD−2)δ(p+) (3.31)

where C > 0. Consequently, in terms of Qj
n and P

j
n one gets

ρ
W0 = C exp

{
− 1

2h̄

D−2∑
j=1

∑
n�=0

1

|n| ((P
j
n )

2 + 4n2(Qj
n)

2)

}
δ(p1), . . . , δ(pD−2)δ(p+). (3.32)

Observe that ρ
W0 is defined by equations (3.27)–(3.29) uniquely up to an arbitrary real constant

factor C > 0. This fact can be interpreted in the deformation quantization formalism as the
uniqueness of the vacuum state.

Then any higher state can be obtained as an appropriate product of the form

(a∗i1n1
, . . . , a∗isns

) ∗
{
C exp

(
− 1

2h̄

D−2∑
j=1

∑
n �=0

1

|n| ((P
j
n )

2 + 4n2(Qj
n)

2)

)

δ(p1 − p1
0), . . . , δ(p

D−2 − pD−2
0 )δ(p+ − p+

0 )

}
∗ (ais

ns
, . . . , ai1

n1
) (3.33)

(compare with [18]).
An interesting question is when a real function ρ

W
(x−,Q, p+, P ) satisfying

equations (3.27) and (3.28) is the Wigner function of a pure state. The answer to this question
in the case of a system of particles can be found in a beautiful paper by Tatarskii [27]. In our
case the solution is quite similar. To this end write

γ (x−,Q, x̃−, Q̃) :=
∫

dp+ dP ρ
W

(
x− + x̃−

2
,
Q + Q̃

2
, p+, P

)

× exp

{
i

h̄
[−(x− − x̃−)p+ + (Q− Q̃)P ]

}
. (3.34)

From equation (3.25) it follows that, if ρ
W

is the Wigner function of the pure state |+〉〈+|,
then

∂2 ln γ (x−,Q, x̃−, Q̃)

∂x−∂x̃−
= ∂2 ln γ (x−,Q, x̃−, Q̃)

∂x−∂Q̃j
n

= ∂2 ln γ (x−,Q, x̃−, Q̃)

∂Q
j
n∂x̃−

= ∂2 ln γ (x−,Q, x̃−, Q̃)

∂Q
j
m∂Q̃k

n

= 0 (3.35)

for every j, k = 1, . . . , D − 2 and m, n ∈ Z (we put xi ≡ Q
j

0, pj ≡ P
j

0 ).
Conversely, let γ satisfy equation (3.35). The general solution of (3.35) is then

γ (x−,Q, x̃−, Q̃) = +1(x
−,Q)+2(x̃

−, Q̃). (3.36)

As the function ρ
W

is assumed to be real we get from equation (3.34)

γ ∗(x−,Q, x̃−, Q̃) = γ (x̃−, Q̃, x−,Q). (3.37)
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Consequently, equation (3.36) has the form

γ (x−,Q, x̃−, Q̃) = A+1(x
−,Q)+∗1 (x̃

−, Q̃) (3.38)

where, by the assumption (3.28), A is a positive real constant. Finally, defining + :=√
A+1(x

−,Q) one obtains

γ (x−,Q, x̃−, Q̃) = +(x−,Q)+∗(x̃−, Q̃). (3.39)

Substituting x− �→ x− + ξ−
2 , Q �→ Q + ξ

2 , x̃− �→ x− − ξ−
2 , Q̃ �→ Q − ξ−

2 , multiplying both

sides by exp{− i
h̄
(−ξ−p+ +ξ ·P)} and integrating with respect to d( ξ−

2πh̄
) d( ξ

2πh̄
) we get exactly

the relation (3.21). This means that our function ρ
W

is the Wigner function of the pure state
+(x−,Q). Thus we arrive at the following theorem.

Theorem 3.1. A real functionρ
W
(x−,Q, p+, P ) satisfying also the conditions (3.27) and (3.28)

is the Wigner function of some pure state if and only if the function γ (x−,Q, x̃, Q̃) defined
by (3.34) satisfies equations (3.35).

In terms of (x−, X, p+,�) variables the conditions (3.35) are

∂2 ln γ [x−, X, x̃−, X̃]

∂x−∂x̃−
= ∂

∂x−
δ ln γ [x−, X, x̃−, X̃]

δX̃

= ∂

∂x̃−
δ ln γ [x−, X, x̃−, X̃]

δX
= δ2 ln γ [x−, X, x̃−, X̃]

δXδX̃
= 0. (3.40)

3.3. Open strings

This is a simple matter to carry over the results of the preceding subsection to the case of open
strings. The thing we must take care with is that the subindex n standing at Qj

n, P j
n , aj

n and
a
∗j
n takes the values n = 1, . . . ,∞. (We let also n be zero in the formulae where Q

j

0 ≡ xj ,
P

j

0 ≡ pj .) Moreover, we should remember that now the oscillator frequencies ωn = n ∈ Z+,
and not 2|n| as before, and also that α̃n, α̃−n do not appear. Thus in the present case one gets

∗ = exp

{
ih̄

2

↔
P
}

= exp

{
ih̄

2

[( ←
∂

∂p+

→
∂

∂x−
−

←
∂

∂x−

→
∂

∂p+

)
+

D−2∑
j=1

( ←
∂

∂xj

→
∂

∂pj
−
←
∂

∂pj

→
∂

∂xj

)]}

× exp

{
1

2

D−2∑
j=1

∞∑
n=1

( ←
∂

∂a
j
n

→
∂

∂a
∗j
n

−
←
∂

∂a
∗j
n

→
∂

∂a
j
n

)}

= · · · exp

{
h̄

2

D−2∑
j=1

∑
n�=0

n

←
∂

∂α
j
n

→
∂

∂α
j
−n

}
. (3.41)

Then the Wigner function of the ground state is now

ρ
W0 = C exp

{
− 2

D−2∑
j=1

∞∑
n=1

aj
na
∗j
n

}
δ(p1), . . . , δ(pD−2)δ(p+)

= C exp

{
− 1

h̄

D−2∑
j=1

∞∑
n=1

1

n

(
(P j

n )
2 + n2(Qj

n)
2

)}
δ(p1), . . . , δ(pD−2)δ(p+) (3.42)

with C > 0. (Compare with equation (3.21) of [18].)
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4. Hamiltonian, square mass, normal ordering and Virasoro algebra

To proceed further with the deformation quantization of bosonic strings we must take into
account that not only the Weyl ordering but also the normal ordering should be implemented in
this quantization. To this end we first consider the Casimir effect in string theory. Consider the
real scalar field 4(τ, σ ) on the cylindrical spacetime R× S1. The circumference of S1 is L.
The standard expansion of4(τ, σ ) satisfying the boundary conditions4(τ, σ ) = 4(τ, σ+nL)

for all n ∈ Z is (compare with equation (2.4))

4(τ, σ ) = x +
1

L
pτ +

1√
L

∑
n�=0

√
h̄

2ωn

{
an exp

(
i

(
2πn

L
σ − ωnτ

))
+ a∗n

× exp

(
− i

(
2πn

L
σ − ωnτ

))}
(4.1)

whereωn = 2π |n|
L

. The conjugate momentum�(τ, σ ) = 4̇(τ, σ ). Employing the deformation
quantization formalism one can show [18] that the expected value of the energy density 〈T00〉(L)

of the ground state is (the Casimir effect)

〈T00〉(L) = − πh̄

6L2
. (4.2)

(In terms of the usual quantum field theory see [33–35].)
Consequently, for the total energy E0(L) of the ground state one gets

E0(L) = L · 〈T00〉(L) = −πh̄

6L
. (4.3)

Consider now the real scalar field 4(τ, σ ) on R× [0, L] but with the boundary conditions
∂4(τ,0)

∂σ
= 0 = ∂4(τ,L)

∂σ
for all τ ∈ R. It is a simple matter to show that now the expansion of

4(τ, σ ) takes the following form:

4(τ, σ ) = x +
1

L
pτ +

1√
2L

∑
n�=0

√
h̄

2ωn

{
an exp

(
i

(
πn

L
σ − ωnτ

))
+ a∗n

× exp

(
− i

(
πn

L
σ − ωnτ

))}
(4.4)

where ωn = π |n|
L

and an = a−n. Comparing (4.1) with (4.4) one quickly arrives at the
conclusion that the oscillating part in (4.4) is mutatis mutandi the same as in (4.1) if, in (4.1),
L is changed to 2L. Hence it follows that in the present case the Casimir effect can be obtained
from (4.2) by inserting 2L instead of L. Thus we have now

〈T00〉(L) = − πh̄

24L2
(4.5)

and for the total energy of the ground state

E0(L) = L · 〈T00〉(L) = − πh̄

24L
. (4.6)

We use the above results in the deformation quantization of bosonic strings.

4.1. Closed strings

In this case one can consider Xj(τ, σ ), j = 1, . . . , D − 2, to be D − 2 real scalar massless
fields on the cylindrical worldsheet R × S1 with L = π . Therefore, by equation (4.3), the
vacuum energy E0 is now

E0 = − h̄(D − 2)

6
=: −4a. (4.7)
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To obtain this E0 from the eigenvalue equation we put N̂ ′H

N̂ ′ := exp

{D−2∑
j=1

∑
n �=0

(
− 1

2
+ γn

)
∂2

∂a
j
n∂a

∗j
n

}

= exp

{
h̄

D−2∑
j=1

∞∑
n=1

n

((
− 1

2
+ γn

)
∂2

∂α
j
n∂α

j
−n

+

(
− 1

2
+ γ−n

)
∂2

∂α̃
j
n∂α̃

j
−n

)}

(4.8)

instead of the Hamiltonian H given by equation (2.21). Then

N̂ ′H ∗ ρ
W0 = −4aρ

W0 (4.9)

if ∑
n �=0

|n|γn = −D − 2

12
. (4.10)

From a previous paper [18] we know that the Weyl image of N̂ ′H is

W(N̂ ′H) =: W(H) : −4a (4.11)

where : W(H) : is the normal ordered operator W(H) and it can be written as follows:

: W(H) := W(N̂H)

N̂ := exp

{
− 1

2

D−2∑
j=1

∑
n�=0

∂2

∂a
j
n∂a

∗j
n

}
= exp

{
− h̄

2

D−2∑
j=1

∞∑
n=1

n

(
∂2

∂α
j
n∂α

j
−n

+
∂2

∂α̃
j
n∂α̃

j
−n

)}
.

(4.12)

Analogously for the squared mass given by equation (2.11) we get

N̂ ′M2 ∗ ρ
W0 = −8πT aρ

W0 . (4.13)

One quickly finds that

W(N̂ ′M2) = W(N̂M2)− 8πT a =: W(M2) : −8πT a. (4.14)

Given the normal ordering operator N̂ and the generalized normal ordering operator
N̂ ′ one can define new star products which are cohomologically equivalent to the Moyal ∗
product (see equations (3.13) or (3.18)). These star products will be denoted by ∗N and ∗N ′ ,
respectively, and they are given by

F1 ∗N F2 = N̂−1(N̂F1 ∗ N̂F2) F1 ∗N ′ F2 = N̂ ′−1(N̂ ′F1 ∗ N̂ ′F2). (4.15)

Consequently the eigenvalue equations for the Hamiltonian or the squared mass are (compare
with equation (4.9) or (4.13))

H ∗N ′ ρN ′
W
= EρN ′

W
�⇒ H ∗N ′ ρN ′

W0
= −4aρN ′

W0

M2 ∗N ′ ρN ′
W
= µ2ρN ′

W
�⇒ M2 ∗N ′ ρN ′

W0
= −8πT aρN ′

W0

(4.16)

where ρN ′
W

:= N̂−1ρ
W

.
It is an easy matter to show that

α−n ∗N αn = α−nαn αn ∗N α−n = αnα−n + h̄n

α̃−n ∗N α̃n = α̃−nα̃n α̃n ∗N α̃−n = α̃nα̃−n + h̄n
(4.17)

for all n ∈ Z+. All other products are the usual products.
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Taking into account equation (4.17) one gets

{α−m, α−n }(N ) = −i
2
√
πT

p+
(m− n)N̂α−m+n − ih̄

4πT

(p+)2

D − 2

12
m(m2 − 1)δm+n,0

{α̃−m, α̃−n }(N ) = −i
2
√
πT

p+
(m− n)N̂ α̃−m+n − ih̄

4πT

(p+)2

D − 2

12
m(m2 − 1)δm+n,0

(4.18)

where {α−m, α−n }(N ) := 1
ih̄ (α

−
m ∗N α−n −α−n ∗N α−m), etc. Thus we arrive at the Virasoro algebra

with a central extension.

Remark. (Calculations in equation (4.18) are rather formal. To perform them one must
always put αn on the right to be α−m m, n ∈ Z+, m �= n, and the same for α̃n and α̃−m. See the
analogous calculations in terms of operator language [4].)

4.2. Open strings

Here we can find the energy of the vacuum state E0 by substituting L = π in (4.6) and taking
into account that we deal with D − 2 scalar fields. Hence

E0 = − h̄(D − 2)

24
= −a. (4.19)

Now the normal ordering operator N̂ and the generalized normal ordering operator N̂ ′ are

N̂ = exp

{
− 1

2

D−2∑
j=1

∞∑
n=1

∂2

∂a
j
n∂a

∗j
n

}
= exp

{
− h̄

2

D−2∑
j=1

∞∑
n=1

n
∂2

∂α
j
n∂α

j
−n

}

N̂ ′ = exp

{D−2∑
j=1

∞∑
n=1

((
− 1

2
+ βn

)
∂2

∂a
j
n∂a

∗j
n

)}

= exp

{
h̄

D−2∑
j=1

∞∑
n=1

n

((
− 1

2
+ βn

)
∂2

∂α
j
n∂α

j
−n

)}
(4.20)

where
∞∑
n=1

nβn = −D − 2

24
. (4.21)

Then

H ∗N ′ ρN ′
W
= EρN ′

W
�⇒ H ∗N ′ ρN ′

W0
= −aρN ′

W0

M2 ∗N ′ ρN ′
W
= µ2ρN ′

W
�⇒ M2 ∗N ′ ρN ′

W0
= −2πT aρN ′

W0
.

(4.22)

Thus, as before, the ground state is the tachyonic one.
Finally, the Virasoro algebra with a central extension is now

{α−m, α−n }(N ) = −i

√
πT

p+
(m− n)N̂α−m+n − ih̄

πT

(p+)2

D − 2

12
m(m2 − 1)δm+n,0. (4.23)

5. Some simple examples: the Wightman functions

Here we are going to present a simple example of calculations within the deformation
quantization formalism. Namely, we find the Wightman (Green) functions 〈Xj(τ, σ ) ∗
Xk(τ ′, σ ′)〉. By definition (see (3.23))

〈Xj(τ, σ ) ∗Xk(τ ′, σ ′)〉 =
∫

dx− dp+ dQ dP ρ
W0(x

−,Q, p+, P )Xj (τ, σ ) ∗Xk(τ ′, σ ′)∫
dx− dp+ dQ dP ρ

W0(x
−,Q, p+, P )

. (5.1)
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where ρ
W0 is given by equation (3.32) (closed string) or (3.42) (open string) and Xj(τ, σ ) is

given by (2.18) (closed string) or by (2.29) (open string).

5.1. Closed strings

Employing equations (2.19) and (3.18) and perfoming simple integrations (Gaussian integrals)
one gets

〈Qj
m(τ) ∗Qk

n(τ
′)〉 = δjkδmn

h̄

4|m| exp(−2i|m|(τ − τ ′)) m, n �= 0. (5.2)

Hence, differentiating (5.2) with respect to τ and/or τ ′ we obtain

〈Qj
m(τ) ∗ P k

n (τ
′)〉 = δjkδmn

ih̄

2
exp(−2i|m|(τ − τ ′)) = −〈P j

m(τ) ∗Qk
n(τ
′)〉

〈P j
m(τ) ∗ P k

n (τ
′)〉 = δjkδmnh̄|m| exp(−2i|m|(τ − τ ′)) m, n �= 0.

(5.3)

Then we have also

〈xj ∗ pk〉 = δjk
ih̄

2
= −〈pj ∗ xk〉

〈pj ∗ pk〉 = 0 〈xj ∗ xk〉 = δjk〈(xj )2〉.
(5.4)

Using equations (5.2)–(5.4) one easily finds

〈Xj(τ, σ ) ∗Xk(τ ′, σ ′)〉 = δjk

{
〈xjxk〉 +

ih̄

2πT
(τ ′ − τ) +

h̄

4πT

×
∑
n�=0

exp(2i[n(σ − σ ′)− |n|(τ − τ ′)])
|n|

}
. (5.5)

Performing the summations in equation (5.5) and removing the part independent of the
coordinates (τ, σ, τ ′, σ ′) we have

〈Xj(τ, σ ) ∗Xk(τ ′, σ ′)〉 ∼ δjk

(
− h̄

4πT

)
×{ln | sin[τ ′ − σ ′ − (τ − σ)]| + ln | sin[τ ′ + σ ′ − (τ + σ)]|}. (5.6)

(Compare with [1, 2, 4, 34].)

5.2. Open strings

For open strings we get

〈Qj
m(τ) ∗Qk

n(τ
′)〉 = δjkδmn

h̄

2|m| exp(−i|m|(τ − τ ′))

〈Qj
m(τ) ∗ P k

n (τ
′)〉 = δjkδmn

ih̄

2
exp(−i|m|(τ − τ ′)) = −〈P j

m(τ) ∗Qk
n(τ
′)〉

〈P j
m(τ) ∗ P k

n (τ
′)〉 = δjkδmn

h̄|m|
2

exp(−i|m|(τ − τ ′)) m, n �= 0.

(5.7)

Then

〈Xj(τ, σ ) ∗Xk(τ ′, σ ′)〉 = δjk

{
〈xjxk〉 +

ih̄

2πT
(τ ′ − τ) +

h̄

πT

×
∞∑
n=1

exp(−in(τ − τ ′)) cos(nσ) cos(nσ ′)
n

}
. (5.8)
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Performing the summations in equation (5.8) and removing the part independent of the
coordinates we get

〈Xj(τ, σ ) ∗Xk(τ ′, σ ′)〉 ∼ δjk

(
− h̄

4πT

){
ln

∣∣∣∣ sin

(
τ ′ − σ ′ − (τ − σ)

2

)∣∣∣∣
+ ln

∣∣∣∣ sin

(
τ ′ − σ ′ − (τ + σ)

2

)∣∣∣∣
+ ln

∣∣∣∣ sin

(
τ ′ + σ ′ − (τ − σ)

2

)∣∣∣∣ + ln | sin

(
τ ′ + σ ′ − (τ + σ)

2

)∣∣∣∣
}
. (5.9)

6. Final remarks

In this paper we have applied the Weyl–Wigner–Moyal formalism to bosonic string theory.
As we have seen, this deformation quantization formalism provides us with a tool which
enables one to describe the quantum bosonic string in terms of the deformed Poisson–Lie
algebra. We have shown that the first quantized string system is equivalently seen as the
Poisson bracket deformation of the bosonic classic string. We have found that, in order to
make this deformation, the light-cone gauge allows the simplest description of the phase space
Z (of the closed and open string) where this deformation is easily implemented.

With the identification of suitable phase space coordinates, the Moyal ∗ product is obtained
(see equations (3.13), (3.19) and (3.41)). Then the SW quantizer was also computed and was
used to find the Wigner functional equation (3.16). The corresponding Wigner functional of the
ground state for closed and open strings was also computed (see equations (3.32) and (3.42),
respectively). Oscillator variables (P,Q) introduced in section 2 greatly facilitate these
computations. The normal ordering from the deformation quantization formalism was applied
in section 3 to compute the Casimir energy in bosonic string theory. The Virasoro algebra with
a central extension was also obtained within the deformed formalism (see equations (4.18)
and (4.23)). Finally, as an application of the deformation quantization, the two-point correlation
functions were also computed. Although up to here we have reproduced some known facts
from string theory, we believe that deformation quantization possesses various advantages. One
advantage of this scheme, with respect to the operator formalism, is that here the classical tools
are still the relevant structure. Operators are no longer necessary and the Hilbert (Fock) space
structure is encoded into the definition of the Moyal ∗ product. Thus the usual complications
of operators are avoided and it facilitates the computation of relevant observables. After that,
the formalism will be completely independent of the Hilbert (Fock) space structure and further
generalization implies only the generalization of classical structures as the Moyal ∗ product.
This is of great advantage because it enables us to use more general formalisms (such as the
Fedosov one for curved phase space and the Kontsevich one for Poisson structures [19]) by
generalizing only the ∗ product. In the classical theory, curved phase spaces would be artificial,
but in field theory, the quantization of the theory requires the quantization of the moduli spaces
of classical solutions of the field equation of motion. It is very well known that these spaces
have non-trivial geometric structure (as Kähler or hyper-Kähler) and here the use of Fedosov’s
formalism seems to be more natural. In [18] and in this paper we intend to give the first
steps toward a general programme of quantizing the moduli spaces of different classical field
theories in various dimensions. Work in these directions will be reported elsewhere. Another
advantage of the deformation quantization formalism is that the description of semiclassical
effects is explicit and under control. Thus it might be useful in the description of semiclassical
effects in string theory such as world-sheet instantons.

The extension of the formalism presented here to the interacting superstring theory and
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its further generalization to superstring field theory is our final goal. In our opinion, another
interesting question is the description of the quantization of the non-commutative effective
supersymmetric gauge on the brane, coming from string theory with a constant Neveu–
Schwarz B field [11]. It is well known that the non-commutativity of the gauge theory is
described through a star product which depends on this B field. Deformation quantization of
this non-commutative gauge theory requires a further star product. That is, the deformation of
a deformation. Deformation quantization is a promising formalism to describe both deformed
structures within the same framework. The derivation of these structures from string theory is
also very intriguing. Some work on defomation quantization of supersymmetric field theory
(see e.g. [36–38]) seems to be crucial in searching for a solution to this problem. The most
intriguing problem is to obtain a similar result for the case of string field theory for the bosonic
and fermionic cases. It is known that the quantization of these systems (BRST cohomology,
path integration, Batalin–Vilkovisky, etc) implying second class contraints can be addressed
with the Dirac bracket. The Dirac bracket can be described through a Poisson structure and
not by a symplectic one. Therefore it seems to us that correct degrees of freedom can be
quantized by using the Kontsevich deformation quantization and its interplay with the Fedosov
formalism. Finally, the relation of the formalism presented here to that of the covariant phase
space approach worked out by Crnković and Witten [39] deserves further investigation.
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[29] Cariñena J F, Gracia Bondı́a J M and Varilly J C 1990 J. Phys. A: Math. Gen. 23 901
[30] Gadella M 1995 Fortschr. Phys. 43 229
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